CDMA的无线远程水质监测系统
CDMA的无线远程水质监测系统
摘要:水质监测在现代集约化渔业养殖管理中起着重要的作用.为提高数据收集过程的效率和精度,拥有I.个能够收集环境数据,尤其是能够对环境的波动进行长期记录并实时更新的自动监测系统是必不可少的.本次研究的目的是为中国的集约化渔业养殖设计I.个以无线通信技术CDMA为基础的远程控制.在线水质监测系统.长期监测到的数据可以使我们了解到周围环境中水质变化的详细动态信息,由此我们能够利用此系统及时的控制水质,并最大限度的减少损失.水质监测系统要求价格低廉,并且能够大规模.远距离.长时间的应用以期获得水质信息,实验结果证明了我们所设计的监测系统均能满足这些要求.
I..引言
水质监测在现代集约化渔业养殖管理中起着重要的作用.传统的水质监测方法包括以下几个步骤:专业检测人员通常使用多参数的仪器来测量水质的变化,如果检测的水质超过了污染警戒值,检测人员就会提取I.定量的污水样本送到化学实验室来分析其中的有害物质.这种方法的测量值和警戒值都需要手动调节,非常费时,而在此期间,I.些污染事件可能会被错过.
目前,新的传感器技术.自动化控制技术和数据遥测技术的发展使得监测系统的能力得到大幅度提高,并强化了在设计缓解和管理策略方面的洞察力.然而目前,在大多数的饮用水和污水处理厂中,却很少有处理厂能够对水质进行持续不断地监测,通信和传感器技术的应用使得远程实时水质监测系统速度大大提高.II00IV年,以免疫化学技术的发展为基础,I.种新型的自动水分分析仪计算机支持系统(AWACSS)得以建立,它可以在短短几分钟之内检测出每升水中所含有的毫微克级的几种有机污染物,同年VII月,这种实时水质监测网络便在拉科尼亚的埃夫罗塔斯河投入使用.
在过去的X多年中,科学家们.政府机构以及世界各地的企业已经开发出了综合水质远程监测系统,并应用在了环境 *好棒文|www.hbsrm.com +Q: ¥351916072¥
及地理位置的数据采集中.同时,I.些研究人员也已注意到了数据采集和终端控制之间的实时通信.可是,除了政府和I.些大型水产养殖公司外,几乎没有企业能负担得起建造这些高科技设备的基础设施所需的费用.因此,对于现代水产养殖业来说,以自动化和实时通信平台为基础,构建I.个价格低廉.简单实用的远程水质监测系统来监测水中污染物显得尤为迫切.这将使得该行业:(I.).改善环境控制;(II).减少灾难性损失;(III).避免排出的污水高于规定指标;(IV).降低管理和劳动力成本;(V)提高产品质量和稳定性.
为提高数据收集过程的效率和精确度,拥有I.个能够收集环境数据.尤其是能够对环境的波动进行长期记录并实时更新的自动监测系统是必不可少的.本次研究的目的是为中国的集约化渔业养殖设计I.个以无线通信技术CDMA为基础的远程控制.在线水质监测系统.这些检测到的数据可以随时通过互联网进行检索和分析,以了解实时监测系统的状态及其变化.长期监测到的数据可以使我们了解到周围环境中水质变化的详细信息,由此我们能够利用此系统及时的控制水质,并最大限度的减少损失.
II.方法
II.I.研究场所的描述
当前由于环境监测技术的不精确性,使得其性价比偏低,换句话说,集约化系统的低利率限制了他们对高价值物种的养殖.我们的研究是在I.家集约化渔农业公司_丰泽集团进行的,它位于中国山东省最北部的渤海湾境内,是I.家典型的循环水产养殖公司.其养殖鱼种中大菱鮃占III0%,牙鮃占IVV%,舌鳎占I.V%,其他种类的鱼占I.0%.这种养殖方法已在商业化的水产养殖孵化场得到实际应用,高效的有氧系统.常规化的水质监测使得鱼塘里每天的有机污染物都能被清理干净.每个养鱼池的大小约是VI.VIIVIIm×VI.VVm×0.VVm,鱼群的平均密度为I.0~IV0Kg/mIII.值得I.提的是,养鱼厂的水是从大型微咸水区域--渤海湾抽取的,并经过滤和充气,从而补偿了在抽取水的过程中的泄露和稀释,保证了养鱼厂的水质条件.
首先,决定监测什么与为什么监测,在哪里监测以及何时监测同样重要.水产养殖系统的水质标准典型的参数有细颗粒固体.难处理有机物.表面活性化合物.金属和硝酸.给定的水质标准值很大程度取决于鱼的种类.渔场的规模和养殖的目标,而在远程无线自动在线水质监测系统中,水的温度.溶解氧.总气体压力.氨及亚硝酸盐含量则可能变为重要参数.
当设计I.个监测程序以满足特定信息目标时,采样频率是非常重要的,因为估值的置信区间是采样数的函数.
我们所设计的的监测系统,需要设置I.些检测标准以便来监测放电.数据流或抽检的样品是否超过了许可值.本文介绍在水产养殖环境状况的重要参数,包括:溶解氧(DO),温度,pH值,盐度和最新的采样频率.
II.II系统架构
远程监测系统必不可少的几个特征应该是安全.可靠.价格低廉.所以,系统架构的选择应当以性价比.综合劳动力.产品价值.环境和供应商的支持等因素为基础.养殖场的每I.个基站均独立而建,因此这就要求不能用有线连接.首先是因为I.些位置太偏远而无法架起任何电网(电力或电话网),其次是因为大面积的水产养殖场和极端流动条件可能会损坏电缆连接.因此,每个基站需利用无线通信技术.通过服务器进行连接.
如图I.所示,我们设计的监测系统的基本结构可以分为两个主要部分:远程监测平台(RMP)和人机界面(HMI),分别用于监 *好棒文|www.hbsrm.com +Q: ¥351916072¥
测和信息的统计分析.这两部分通过CDMA技术实现彼此之间的通信.
II.III远程监测平台
远程监测平台包含传感器(温度,pH值,溶解氧等),信号调理电路,数据采集板和CDMA模块.
传感器将环境中各种非电量因素转化为电量因素,由信号调节电路将其转换为线性关系并过滤为0~VV的标准信号.信号之间通过网络的监测芯片PICNIC和A/D转换来实现传输,然后转换成数字信号的信息的动态网页.
CDMA模块使RMP能够接收数据,并将其传输数据到个人电脑来进行进I.步分析.由RMP监测到的主要变量被记录于表I.中.
II.IV数据传输
几组数据采集节点集合通过WiFi无线局域网来传输信息,当计算机上运行I.个通信程序时,可以通过TCP/IP协议将信息传输到远程服务器.
现场监测站利用中国联通的CDMA业务,通过服务器进行连接.以CDMA和IPsecVPN(虚拟专用网)路由器建立起来的虚拟局域网,使得此局域网上的Java代理程序可以访问实时.动态数据并能保证远距离无线传输的安全性.
II.V软件组织
根据本系统的操作要求而设计的人机界面如下所述:
I.)图形编辑器配置:用户可以使用设计好的图形元素数据库创建和编辑监测图形并设置其属性.
II)测量演示:在HMI上以特定格式显示测量结果,如图形,图表,表格等.
III)报警通知:当I.个或多个被监测变量值变化异常时,HMI便会通过声音和屏幕上的警告消息来提醒用户.
IV)账户管理:运营商可以通过设置帐户信息,密码和用户权限来轻松地管理授权用户.
V)系统配置:HIM的程序可由用户进行编辑,从而使得不同的用户可以设置不同的数据采集时间表和报警级别.
很显然,在线监测系统的软件部分包括III个基本模块.
II.V.I.图形编辑器配置模块.该程序可以根据水产养殖农场(车间,水池,设备,仪表等)的实际情况进行编辑并将监测传感器中的信号标记为的视觉图像,然后以SVG(可伸缩矢量图形)或XML文件形式保存下来.这些图形都是文本文档,因而易于创建.
此模块的主要特征包括形状.文本和有许多不同绘画风格的嵌入式光栅图形.图形编辑器的配置界面主要由工具栏树视图菜单绘图区域参数设置对话框和元件盒组成,如图II所示.如果用户要绘制文本框的形状,只需将鼠标移动到绘图区域中,单击并拖动图形即可.
II.V.II实时监测模块.该模块主要描述了使用图表.指针和表格来测量各参数的值,同时执行其他数据处理,存储以及网络相关的任务.图III记录了第V次研讨会中从I.0年VIII月V日至I.III年VIII月V日III年来各参数的日变化.
服务器首先将数据存储在XML文件中并以每天.每周.每月和每年报告的形式存储在数据库中,同时它会将测量值与用户预定的(或重新设定的)允许值相比较,存储的时间间隔是I.分钟.接着,它会将所有的测量值.比较值以及功能错误记录于不同的文件中,最后向授权用户指定的手机上发送I.条消息,从而使每个用户知道哪I.个鱼池里的指标超过了允许值.
II.V.III数据分析模块.数据分析方法是I.个完整的监测程序设计不可分割的I.部分,并在规划阶段就应给予考虑.WQTM系统的数据分析的目的是检测水质波动的趋势.因而,系统的数据分析技术的发展起着至关重要的作用.
考虑到有可能发生数据传输问题,系统中应用了I.种数据初步恢复程序.在集约化水产养殖中,水质环境监测数据有I.定的滞后性,因此,这就需要提前决策和控制,控制命令通过预测数据触发,至于预测控制策略则是I.个基本概念.
II.VI系统实施
我们建造的远程水质在线监测系统,结合了CDMA网络与互联网.机电I.体化.无线通信技术,系统的结构图如图I.所示.该系统可以被分成两个主要部分:RMP和HMI.
RMP用PICNICII.0(III态,日本)作为coreprocessing芯片和CDMA模块(InRouterIII.0C,中国)进行数据传输.由传感器记录的数据通过中国联通的CDMA业务传输到远程的信息服务器.因此,用户将能够通过互联网监测水中的各参数值.
用于目前研究的温度.DO.pH值.盐度的传感器的探针,是由Nantu公司(中国)制造的,分别可以精确到0.I.℃,0.I.mg/L,0.I.,0.I.ppt.HQIV0dI.VIII(哈希,美国)能保证长期使用的稳定性,能提供I..0%的高测量精度的相对优化的数据和精度为0.I.℃的温度数据.该CDMA模块(模块号:FASTRACKMI.II0IIIQIIIIIVVIII)由WAVECOM公司创建.
远程在线监测系统的人机界面通过JSP.Servlet和JavaBeen技术运行,并采用了模型_视图_控制器(MVC)结构来布局.用于开发我们所提出的CDMA的远程无线水质监测系统的软件和硬件清单如下所示:
软件:Eclipse.MyEclipseIII.II,LabVIEW,MySQL,ApacheTomcatV.V.
硬件:用于测量(温度,pH,溶解氧,EC)的传感器,监测芯片(PICNICII.0),CDMA模块,PC机.
两台结合了CDMA数字服务和VPN技术的原型机监测服务器已最先实际安装到了山东省的I.个水产养殖场中,以便来构建I.个遥感网络,如图IV所示.检测到的这些数据可以在任何时间通过因特网来检索和分析,以便掌握系统的实时状态及其变化,如图V.
III.结果与讨论
III.I.WQTM系统的定期监测
目前的研究结合了两种取样方法:I.是由水产养殖者在固定位置进行详细取样,II是通过WQTM系统中的遥感数据来取样.该系统每分钟的测量频率使其每天都能密切监测那些通过样品无法检测到的变化.
由于养鱼场是I.个高度敏感.开放.动态的体系,所有参数都在持续快速地变化着,在这个频率下能够被自动检测到的参数中,有I.些在I.定的范围内呈现出I.种自然的日常周期性波动.在图III的曲线中,这些围绕某I.最佳值平滑波动的曲线明显地表明环境中的压力变化不大,它会显示为第V个工作船的NO.0V0VIVI.鱼池的时间周期指标.
水质监测系统要求能够大规模.远距离.长时间的应用以期获得水质信息,而实验结果证明了我们所设计的监测系统均能满足这些要求.
III.II系统性能评价的实验结果
除去仪器维护的天数,我们测试和验证整个系统已有IIIIIV天.图VI显示了II00VIII年VI月I.日通过RMP#I.收集到的I.天的溶解氧的监测数据,监测频率设为III分,故每天共有VIIIIVI.条远程监测数据的记录,水中的各参数的值也每个小时通过手动测量来验证精度.图VI显示了每小时监测数据的平均值,由此,我们可以得出I.条结论:监测数据与手动收集的数据的确相符合.
不同于手动检测,主要部分的工作是必须由人工完成,远程在线监测系统可以自动获取数据,而无需频繁到某I.水域取样调查.因而,I.些污染事件也不会像人工检测I.样被错过.图VII显示了II00VIII年VI月I.日I.天中通过RMP#I.收集的pH值的监测数据,有时pH值的人工数据线迅速上升和下降,有时候它保持在I.条水平线上.通过系统监测到的数据而计算的每小时的平均值能够反应出水的实际状态.由此图可以证明和确认我们的系统的可靠性和准确性.结果表明在准确度.重复性和重现性方面,WQTM系统完全可以与传统的的分析方法相媲美.
通过分析每天的信息,此系统可以将长期观测到的本地的水质变化值与动力学参数值呈献给我们,因此如果安装更多的RMP,水质变化的影响因素就能以较高的时间和空间分辨率调查出来.
IV.结论
本研究开发了I.个完整的在线监测系统,能为水产养殖业提供远程水质信息,当被监测变量发生异常时,它实现了利用远程无线系统来监测环境中水的各参数值并发出报警通知.本研究的主要贡献在于,使大规模.远距离.长时间应用监测系统来获得水质信息的技术得以实现.但是,重要的是要考虑最终的长期愿景或目标,并确保所使用的技术对监测各种污染事件有足够的灵敏度.这将需要在监测和模型之间建立I.种强有力的联系,使其具备预测水质变化的能力,这种能力像是未来可能发生或是过去已经发生的错误和变化预测.
V.致谢
本工作获得国家高科技研究发展计划(II00VIIAAI.0ZIIIIIVIII)和国家重点科技研发计划(II00VIBADI.0A0II-0V)资金支持.作者在此感谢丰泽公司的成员,感谢他们热情好客以及对水质数据收集的协助.
附件II:外文原文(复印件)
CDMA-basedRemoteWirelessWaterQualityMonitoringSystemforIntensiveFishCulture
XiunaZhu
EU-ChinaCenterforInformation&CommunicationTechnologies
CollegeofInformationandElectricalEngineering,ChinaAgriculturalUniversity
Beijing,I.000VIIIIII,China
DaoliangLi?
EU-ChinaCenterforInformation&CommunicationTechnologies
CollegeofInformationandElectricalEngineering,ChinaAgriculturalUniversity
BeijingI.000VIIIIII,China
Email:dliangl@cau.edu.cn
Abstract
WaterqualitymonitoringplaysanimportantroleinmodernIntensivefishfarmingmanagement.Inordertoimprovetheefficiencyandprecisionofthedatacollectionprocedure,itisnecessarytohaveanautomatedmonitoringsystemthatcollectsenvironmentaldata,especiallytorecordlong-termandup-to-the-minuteenvironmentalfluctuations.Thepurposeofthisresearchwastodesignaremote-controlled,on-linewaterqualitymonitoringsystemforintensivefishcultureinChinabasedonwirelesscommunicationtechnologyCDMA.Sincethelong-termdetecteddataprovidesuswiththedetailsoftheenvironmentalconditionsdynamicsofwaterquality,thesystemallowsustocontrolthewaterqualityintimeandreducecatastrophiclosses.Theexperimentalresultsdemonstratethataffordable,largescale,longdistance,andlong-termmonitoringforwaterqualityinformationcanbeachievedbyusingourproposedmonitoringsystem.
I..Introduction
WaterqualitymonitoringplaysanimportantroleinmodernIntensivefishfarmingmanagement.Theclassicmethodofwaterqualitymonitoringconsistsofthefollowingsteps.Aqualifiedpersontakesmeasurementsofqualityvariable,normallyusingamulti-parametricinstrument.Incaseofdetectingacontaminationalarm,asampleofwateristakenandtransportedtoachemicallaboratoryinordertoanalyzethehazardoussubstancesmixedwithwater[I.II].Themaintenanceofthemeasurementsandalarmeventsismanualandtime-consuming.Otherwise,somecontaminationepisodesmightbemissed.
Advancementsinnewsensortechnologies,automatedcontrols,anddatatelemetrynowallowforunprecedentedmonitoringcapabilitiestostrengtheninsightsindesigningmitigationandmanagementstrategies[III].Atpresent,continuousmonitoringofdrinkwaterandwastewaterqualityatmosttreatmentplantsisinfrequent[VI].Real-timeremotemonitoringofwaterqualitysystem[II,I.V]basedoncommunicationandsensortechnologyhavegreatlyenhancedrapid.Areal-timewaterqualitymonitoringnetworkofEvrotasRiverhasbeenoperationalinLaconiasinceJulyII00IV[I.0].II00IV,anovelAutomatedWaterAnalyserComputerSupportedSystem(AWACSS)hasbeenbuiltbasedonimmunochemicaltechnology,whichcanmeasureseveralorganicpollutantsatlownanogramperlitrelevelinasinglefew-minutesanalysis[I.III].
Withinthepastdecade,integratedwaterqualityremotemonitoring(WQTM)systemshavebeendevelopedanddeployedbyscientists,governmentalagencies,andindustriesthroughouttheworldforenvironmentalandgeolocationdataacquisition.Atthesametime,someresearchershavepaidattentiontothereal-timecommunicationbetweendatacollectionandcontrolterminals[IV,V,I.IV].However,thefinancialburdenforbuildingthefundamentalhardwareofthesehigh-techfacilitiesmayonlybeaffordabletogovernmentsorverylargeaquiculturecorporations.Therefore,constructinganaffordable,easy-to-use,remotewaterqualitymonitoringsystemtodiagnosticcontaminationbasedonanautomaticandreal-timecommunicationplatformisurgentlyneededformodernagriculture.Itwillallowtheindustryto:(I.)improveenvironmentalcontrol;(II)reducecatastrophiclosses;(III)avoidproblemwithenvironmentalregulationsoneffluents;(IV)reducemanagementandlaborcosts;and(V)improveproductqualityandconsistency[VII,VIII].
Inordertoimprovetheefficiencyandtheprecisionofthedatacollectionprocedure,itisnecessarytohaveanautomatedsystemthatcollectsenvironmentaldata,especiallytorecordlong-termandup-to-the-minuteenvironmentalfluctuations.Thepurposeofthisresearchwastodesignaremote-controlled,on-linewaterqualitymonitoringsystemforintensivefishcultureinChinabasedonwirelesscommunicationtechnology.ThesedetecteddatacanberetrievedandanalyzedatanytimeviatheInternetsoastoknowthereal-timesystemstatusanditschange.Sincethelong-termdataprovidesuswiththedetailsoftheenvironmentalconditionsdynamicsofwaterquality,thesystemallowsustocontrolthewaterqualityintimeandreducecatastrophiclosses.
II.Methodology
II.I..Studysitedescription
Thecost-performancerelationshipofcurrentinaccurateenvironmentalmonitoringtechnologymeansthattheprofitmarginofIntensivesystemslimitstheirusetohighvalueculturespecies.Thecurrentstudywasconductedinanintensivefishfarmculturesite,FengzeCorporation,locatedinsideBohaiBayatthenorthestpartofShandong,China,whichisatypicalrecyclingaquaculturesystem(RAS)[I.].TheculturespeciesareIII0%turbot(Psettamaxima),IVV%Paralichthys,I.V%CynoglossusandI.0%otherfishspecies.Thissitehaspracticalapplicationsincommercialaquaculturehatcheries,effectiveaerobicsystem,monitoringwaterqualityroutinelyandcleaning-upoffoulingorganismsontheculturepoolseveryday.EachfishpoolisapproximatelyVI.VIIVIIm×VI.VVm×0.VVm.TheaveragefishstockdensityisI.0~IV0kg/mIII.Wateristypicallydraw-outfromBohaiBay,alargebrackishwaterarea,filteredandaerated,tomaintainwaterqualityconditionswhichcompensatedforwaterspillsanddilutionsoftheculturewater.
Firstly,decidingwhattomonitorisasimportantasdecidingwhy,whereandwhen.Waterqualitycriteriaforaquaculturesystemshavetypicallyconsideredparameterssuchasfinesolids,refractoryorganics,surface-activecompounds,metals,andnitrate[I.I.].Thevalueofagivenwaterqualitycriterionmaydependstronglyonthespecies,size,andcultureobjectives.Inremotewirelessautomaticon-linewaterqualitymonitoringsystems,temperature,dissolvedoxygen,totalgaspressure,ammonia,andnitritemaybecomeimportant.
Thefrequencyofsamplingisofgreatimportancewhendesigningamonitoringprogramtomeetspecifiedinformationgoals,becausetheconfidenceintervalsofestimatesareafunctionofthenumberofsamplestaken[IX].
Inourproposedmonitoringsystem,itrequirestheestablishmentofstandardsbywhichtomonitorifadischarge,streamorsampleisviolationofsomeacceptablelimit.Thispaperpresentsthecriticalparameterforenvironmentalstatusinaquaculture:dissolvedoxygen(DO),emperature,pH,salinity.Andthefrequencyofsamplingisup-to-theminute.
II.II.Systemarchitecture
Reliability,securityandinexpensivecharacteristicsrequiredwillallbeessentialintheremotemonitoringsystem.Therefore,thechoiceofthesystem’sarchitectureshouldbebasedonpriceperformance,consideringlabor,productvalue,environmentandvendorsupport.Theculturestationsarealllocatedalone,sothatnowiringwouldbenecessary,firstlybecausesomelocationsareremoteformanycablenetwork(powerortelephoneline)andsecondlybecauselargeareaofAquaculturefarmsandextremeflowconditionscoulddamagecableconnections.Consequently,eachstationiscommunicatedwithserverviawirelesscommunicationtechnology.
AsisshowninFigureI.,thebasicstructureofourproposedsystemcanbedividedintotwomajorparts:theRemotemonitoringplatform(RMP)andtheHumanMachineInterface(HMI)formonitoringandstatisticalanalysisofinformation,respectively.ThesetwopartscommunicatewitheachotherthroughCDMAtechnology.
II.III.Remotemonitoringplatform
TheRemotemonitoringplatformcontainssensors(temperature,pH,DO,etal.),thesignalconditioningcircuits,adata-acquisitionboardandCDMAmodule.
Sensorsconvertthevariousenvironmentalfactorsofnon-electricityintoelectricity,whichisbeconverttolinearbythesignalconditioningcircuitsandfilteredto0~VVstandardsignal.ThesignalistransmittedthoughtheWEBbasedmonitoringchipPICNICandtheA/Dconversionthenconvertedintoadigitalsignaltodynamicpagesofinformation.
TheCDMAmoduleenablestheRMPtoreceiveandtransmitdatatoaPCforfurtheranalysis.ThemainvariablescanbemonitoredbyRMParereportedinTableI..
II.IV.Datatransmission
TheseveralsetsofdataacquisitionnodetransmittheformationbyWiFiwirelessLAN,whilethecomputerrunningacommunicationprogramcantransmitinformationtotheremoteserverbyTCP/IPprotocol.
Fieldmonitoringstationiscommunicatedwithserver,usingChinaUnicom’sCDMAservices.ThevirtuallocalareanetworkbasedonCDMAandIPsecVPN(VirtualPrivateNetwork)routerisestablished,JAVAAGENTprogramintheserversystemcanaccessdatareal-timeanddynamicandsafetyoflong-rangewirelesstransmission.
II.V.Softwareorganization
Accordingtothesystemoperationrequirements,thedesignedhumanmachineinterfaceisdescribedasfollows:
I.)Graphicseditorconfiguration:Theusercancreateandeditmonitoringgraphicsusingdesignedgraphicelementsdatabaseandsetitsproperties.
II)Measurementpresentation:TheHMIshowsthemeasurementsinaspecificformat,suchasgraphs,charts,tables,etc.
III)Alarmnotification:Whenoneormoremonitoredvariablestakeanomalousvalues,theHMIattractstheattentionoftheuserwithsoundsandon-screenwarningmessages.
IV)Accountmanagement:Authorizeduserscanbemanagedwitheasebysettingaccountinformation,passwordanduserprivilege.
V)Systemconfiguration:HMIwasdesignedtobeprogrammablebytheusersothatdifferentdatacollectionschedulesandalarmlevelscanbesetup.
Thesoftwareoftheon-linemonitoringsystemclearlyincludesthreebasicmodules.
II.V.I.Graphicseditorconfigurationmodule.
Theprogramcanedittheaquaticbreedingfarms(workshops,pools,devices,meters,etc.)oftheactualsituation,andmarkthemonitoringsensorsinthevisualimageoflayout,thensaveasSVG(ScalableVectorGraphics)orXMLfiles.Thegraphicsaretext-basedandthuseasytocreate.
Keyfeaturesincludeshapes,textandembeddedrastergraphics,withmanydifferentpaintingstyles.TheInterfaceofgraphicseditorconfigurationismainlycomposedoftoolbartreeviewmenudrawingareaparametersetdialogboxandcomponentbox,asisshowninFigureII.Todrawthetextshape,theusersjusthavetomovemouseoverthedrawingarea,clickanddrag.
II.V.IIReal-timemonitoringmodule.
Theprogrambasicallypresentsthevaluesofmeasuredparametersusingcharts,needleindicatorsandtables,alsoperformingotherdataprocessing,storage,andInternet-relatedtasks.FigureIIIshowsthedailyvariationofparametersoffifthworkshopfrom0VIII-V-I.0to0VIII-V-I.III.
Theserver,firstlystoresdatainXMLfilesandindaily,weekly,monthlyandyearlyreportsinthedatabaseandatthesametimeitcomparesmeasurementstothepredefined(orredefined)acceptablelimitssetbytheuser.ThetimeintervalisI.minute.Furthermore,itrecordsallmeasurementsorcommunicationorfunctionalerrorsindifferentfiles,andfinallysentamessagetoaspecificphonenumbers,keptbytheauthorizeduser,sothatthepersonnelisawarethattherebeenalarminthespecificpool.
II.V.IIIDataanalysismodule.
Dataanalysismethodsareanintegralpartofacompletemonitoringprogramdesign,andshouldbeconsideredattheplanningstage.TheaimofdataanalysisofWQTMsystemistodetectatrendofwaterqualityfluctuation.Tothispurposethedevelopmentofdataanalysistechniquesforsystemplaysacrucialrole.
Inrespectthatitispossibletotakeplacedatatransmissionproblems,apreliminarydatarecoveringprocedurewasapplied.Intheintensiveaquaculture,themonitoreddataofthewaterqualityenvironmentalhaveacertainlag.Therefore,itneedstomakedecisionsandcontrolinadvance.Controlordersaretriggeredbyforecastdata,astosaypredictivecontrolstrategyisabasicidea.
II.VI.SystemImplementation
CombiningtheCDMAnetworkwiththetechnologiesoftheInternet,mechatronics,andwirelesscommunication,thisstudyconstructsaremotewirelesson-linewaterqualitymonitoringsystem.ThestructuraldiagramofthesystemisshowninFigureI..Thesystemcanbedividedintotwomajorparts:theRMPandtheHMI.
TheRMPusedPICNICII.0(TriState,Japan)asthecoreprocessingchipandtheCDMAmodule(InRouterIII.0C,China)fordatatransmission.ThedatarecordedbysensorsistransferredtotheremoteinformationserverthroughtheChinaUnicom’sCDMAservices.Therefore,theuserwillbeabletomonitorthewaterparametervaluesviatheInternet.
Theprobeofsensorusedthepresentstudyfortemperature,DO,pH,salinityismadebytheNantuCompany(China)withanaccuracyof0.I.°C,0.I.mg/L,0.I.,0.I.pptseparately.TheHQIV0dI.VIII(HACH,USA)provideslongtermstabilityandhighmeasurementaccuraciesofI..0%forrelativeDOand0.I.°Cfortemperature.TheCDMAmodule(moduleno.:FASTRACKMI.II0IIIQIIIIIVVIII)createdbyWAVECOMCorporation.
TheHMIofremoteon-linemonitoringsystemwasprogrammedwithJSP,ServletandJavaBeantechnologyusingModel-View-Controller(MVC)architecture.ThesoftwareandhardwareusedtodevelopourproposedCDMA-basedremotewirelesswaterqualitymonitoringsystemarelistedasfollows:
Software:Eclipse,MyEclipseIII.II,LabVIEW,MySQL,ApacheTomcatV.V.
Hardware:sensorsformeasuring(temperature,pH,DO,EC),monitoringchip(PICNICII.0),CDMAmodule,PC.
OriginallytwoprototypeofmonitoringserverscombinedwithCDMAdigitalservicesandVPNtechnologyhaveinstalledtopracticalaquafarminShandongtoconstructaremotesensingnetwork,asshowninFigureIV.
ThesedetecteddatacanberetrievedandanalyzedatanytimethroughtheInternetsoastoknowthereal-timesystemstatusanditschange,asshowninFigureV.
III.ResultsandDiscussion
III.I..RegularmonitoringofWQTMsystem
Thecurrentstudycombinedtwosamplingstrategies:detailedmeasurementatfixedpositionsbyaquaculturistsandremotelysenseddatabyWQTMsystem.Thefrequencyofmeasurementsofthissystem(everyoneminute)permitsclosemonitoringofchangesthatcouldnotbedetectedbysampling,evenonadailybasis.
Allparametersarechangingcontinuouslyandveryquickly,sinceafishfarmisahighlysensitive,open,dynamicsystem.Amongtheparametersthatcanbemonitoredautomaticallywiththisfrequency,someshowanaturaldailyperiodicalfluctuation,withincertainlimits.InthegraphoftheFigureIII,thesesmoothfluctuationsaroundverygoodvaluesareobviousindicationoftheabsenceofsevereenvironmentalpressure.ItisshownforanindicativeperiodoftimeoftheNO.0V0VIVI.fishpondofthefifthworkship.Theexperimentalresultsdemonstratethatlargescale,longdistance,andlong-termmonitoringforwaterqualityinformationcanbeachievedbyusingourproposedmonitoringsystem.
III.II.Experimentalresultsofsystemperformanceevaluation
Exceptfordaysweperformedmaintainedontheinstruments,wehavetestedandverifiedtheentiresystemforIIIIIVdays.FigureVIshowsthemonitoringdataofdissolvedoxygenforasingledayascollectedbyRMP#I.onJuneI.stII00VIII.ThefrequencyofmonitoringwassetIIIminute,sotherewereVIIIIVI.recordsofremotemonitordataperday.Andthevaluesofwaterparameterswerealsomanuallysurveyedveryhourtoverifytheaccuracy.AsshowninFigureVI,theaveragevaluesofremotemonitordataeveryhourweredisplayed.Sowecanconcludethatthemonitordatadidmatchthedatacollectedmanually.
Unlikesurveymanually,mainpartworkofwhichhastobedonebyahumanbeing,theremoteon-linemonitoringsystemcangetthedataautomaticallywithoutvisitingtothewaterlocationfrequently.Otherwise,somecontaminationepisodeswouldnotbemissedlikesurveymanually.FigureVIIshowsthemonitoringdataofpHforasingledayascollectedbyRMP#I.onJuneI.stII00VIII.SometimesthemanualdatalineofpHincreasedanddecreasedrapidly,andsometimesitholdonasahorizontallineasshowninFigureVII.Theaveragevaluesofremotemonitordataeveryhourcalculatedbythemonitoreddatacanindicatetherealstateofwater.Thusthegraphcandemonstrateandconfirmthereliabilityandaccuracyofoursystem.TheresultsshowedthatWQTMsystemisfullycomparabletoconventionalanalyticaltechniquesintermsofaccuracy,repeatabilityandreproducibility.
Thesystemcanprovideuswithlong-termobservationsonboththewaterqualityvariationsandthewaterparameterdynamicsinalocalareabycalculatingtheinformationforeachday.ThustheeffectsofwaterqualityvariationscanbeinvestigatedinagoodtemporalandspatialresolutionifmoreRMPsareinstalled.
IV.Conclusion
Thisstudydevelopedacompleteandon-linemonitoringsystemforremotewaterqualityinformationoffishfarming.Itachievedtheremotewirelessmonitorthewaterenvironmentalparametersandalarmnotificationwhenmonitoredvariablestakeanomalousvalues.Themajorcontributionofthisstudyisthatitmakeslargescale,longdistance,andlong-termmonitoringforwaterinformationachievable.However,itisimportanttoconsidertheultimatelongtermvisionorgoalandensurethatthetechniquesusedaresensitiveenoughtodetectvariousilestones.Thiswillrequireastronglinkbetweenmonitoringandmodelingtoprovidetheabilitytopredictperturbationsinwaterqualitythatarelikelytooccurinthefutureandhaveoccurredinthepastinconjunctionwithanerrororvariabilityprediction.
V.Acknowledgements
ThisworkwasfinanciallysupportedbytheNationalHighTechnologyResearchandDevelopmentProgramofChina(II00VIIAAI.0ZIIIIIVIII)andNationalKeyTechnologyR&DProgram(II00VIBADI.0A0II-0V).TheauthorswouldliketothankthemembersofFengzeCompanyfortheirhospitalityandfortheassistancewiththecollectionofthewaterqualitydata.
References
[I.]Colt,J.Waterqualityrequirementsforreusesystems.AquaculturalEngineering,IIIIV(III):I.IVIII–I.VVI,II00VI.
[II]Glasgow,H.B.,etal.Real-timeremotemonitoringofwaterquality:areviewofcurrentapplications,andadvancementsinsensor,telemetry,andcomputingtechnologies.JournalofExperimentalMarineBiologyandEcology,III00(I.-II):IV0IX–IVIVVIII,II00IV.
[III]Helbling,D.E.andJ.M.VanBriesen.Continuousmonitoringofresidualchlorineconcentrationsinresponsetocontrolledmicrobialintrusionsinalaboratory-scaledistributionsystem.WaterResearch,IVII(I.II):IIII.VIII–IIII.VIIII,II00VIII.
[IV]Jiang,J.A.,etal.Agsm-basedremotewirelessautomaticmonitoringsystemforfieldinformation:Acasestudyforecologicalmonitoringoftheorientalfruitfly,bactroceradorsalis(hendel).ComputersandElectronicsinAgriculture,VIII(II):IIIVIII–IIVIX,II00VIII.
[V]Jiang,J.A.,etal.Areal-timewirelesssmartsensorarrayforschedulingirrigation.ComputersandElectronicsinAgriculture,VII.(I.):IVIV–V0,II00VIII.
[VI]Lee,M.W.,etal.Real-timeremotemonitoringofsmallscaledbiologicalwastewatertreatmentplantsbyamultivariatestatisticalprocesscontrolandneuralnetwork-basedsoftwaresensors.ProcessBiochemistry,IVIII(I.0):I.I.0VII–I.I.I.III,II00VIII.
[VII]Lee,P.G.Areviewofautomatedcontrolsystemsforaquacultureanddesigncriteriafortheirimplementation.AquaculturalEngineering,I.IV(III):II0V–IIIIVII,I.IXIXV.
[VIII]Lee,P.G.Processcontrolandartificialintelligencesoftwareforaquaculture.AquaculturalEngineering,IIIII(I.-III):I.III–IIIVI,II000.
[IX]Loftis,J.C.andR.C.Ward.Cost-effectiveselectionofsamplingfrequenciesforregulatorywaterqualitymonitoring.EnvironmentInternational,III(IV):IIIXVII–III0II,I.IXVIII0.
[I.0]Mariolakos,I.etal.Real-timemonitoringonevrotasriver(laconia,greece):dissolvedoxygenasacriticalparameterforenvironmentalstatusclassificationandwarning.Desalination,III.III(I.-III):VIIII–VIII0,II00VII.
[I.I.]Sim,F.S.,etal.Waterqualityindexasasimpleindicatorofaquacultureeffectsonaquaticbodies.EcologicalIndicators,VIII(V):IVVIIVI–IVVIIIIV,II00VIII.
[I.II]Tor,F.,etal.Designofavirtualinstrumentforwaterqualitymonitoringacrosstheinternet.SensorsandActuatorsB:Chemical,VIIVI(I.-III):IIVIIII.–IIVIIIV,II00I..
[I.III]Tschmelak,J.,etal.Automatedwateranalysercomputersupportedsystem(awacss):Partii:Intelligent,remote-controlled,cost-effective,on-line,water-monitoringmeasurementsystem.BiosensorsandBioelectronics,II0(VIII):I.V0IX–I.VI.IX,II00V.
[I.IV]Tseng,C.L.,etal.Feasibilitystudyonapplicationofgsmsmstechnologytofielddataacquisition.ComputersandElectronicsinAgriculture,VIII(I.):IVV–VIX,II00VI.
[I.V]Udy,J.,etal.Waterqualitymonitoring:acombinedapproachtoinvestigategradientsofchangeinthegreatbarrierreef,australia.MarinePollutionBulletin,VI.(I.-IV):IIIIIV–IIIIIVIII,II00V.IIIVIIIV
摘要:水质监测在现代集约化渔业养殖管理中起着重要的作用.为提高数据收集过程的效率和精度,拥有I.个能够收集环境数据,尤其是能够对环境的波动进行长期记录并实时更新的自动监测系统是必不可少的.本次研究的目的是为中国的集约化渔业养殖设计I.个以无线通信技术CDMA为基础的远程控制.在线水质监测系统.长期监测到的数据可以使我们了解到周围环境中水质变化的详细动态信息,由此我们能够利用此系统及时的控制水质,并最大限度的减少损失.水质监测系统要求价格低廉,并且能够大规模.远距离.长时间的应用以期获得水质信息,实验结果证明了我们所设计的监测系统均能满足这些要求.
I..引言
水质监测在现代集约化渔业养殖管理中起着重要的作用.传统的水质监测方法包括以下几个步骤:专业检测人员通常使用多参数的仪器来测量水质的变化,如果检测的水质超过了污染警戒值,检测人员就会提取I.定量的污水样本送到化学实验室来分析其中的有害物质.这种方法的测量值和警戒值都需要手动调节,非常费时,而在此期间,I.些污染事件可能会被错过.
目前,新的传感器技术.自动化控制技术和数据遥测技术的发展使得监测系统的能力得到大幅度提高,并强化了在设计缓解和管理策略方面的洞察力.然而目前,在大多数的饮用水和污水处理厂中,却很少有处理厂能够对水质进行持续不断地监测,通信和传感器技术的应用使得远程实时水质监测系统速度大大提高.II00IV年,以免疫化学技术的发展为基础,I.种新型的自动水分分析仪计算机支持系统(AWACSS)得以建立,它可以在短短几分钟之内检测出每升水中所含有的毫微克级的几种有机污染物,同年VII月,这种实时水质监测网络便在拉科尼亚的埃夫罗塔斯河投入使用.
在过去的X多年中,科学家们.政府机构以及世界各地的企业已经开发出了综合水质远程监测系统,并应用在了环境 *好棒文|www.hbsrm.com +Q: ¥351916072¥
及地理位置的数据采集中.同时,I.些研究人员也已注意到了数据采集和终端控制之间的实时通信.可是,除了政府和I.些大型水产养殖公司外,几乎没有企业能负担得起建造这些高科技设备的基础设施所需的费用.因此,对于现代水产养殖业来说,以自动化和实时通信平台为基础,构建I.个价格低廉.简单实用的远程水质监测系统来监测水中污染物显得尤为迫切.这将使得该行业:(I.).改善环境控制;(II).减少灾难性损失;(III).避免排出的污水高于规定指标;(IV).降低管理和劳动力成本;(V)提高产品质量和稳定性.
为提高数据收集过程的效率和精确度,拥有I.个能够收集环境数据.尤其是能够对环境的波动进行长期记录并实时更新的自动监测系统是必不可少的.本次研究的目的是为中国的集约化渔业养殖设计I.个以无线通信技术CDMA为基础的远程控制.在线水质监测系统.这些检测到的数据可以随时通过互联网进行检索和分析,以了解实时监测系统的状态及其变化.长期监测到的数据可以使我们了解到周围环境中水质变化的详细信息,由此我们能够利用此系统及时的控制水质,并最大限度的减少损失.
II.方法
II.I.研究场所的描述
当前由于环境监测技术的不精确性,使得其性价比偏低,换句话说,集约化系统的低利率限制了他们对高价值物种的养殖.我们的研究是在I.家集约化渔农业公司_丰泽集团进行的,它位于中国山东省最北部的渤海湾境内,是I.家典型的循环水产养殖公司.其养殖鱼种中大菱鮃占III0%,牙鮃占IVV%,舌鳎占I.V%,其他种类的鱼占I.0%.这种养殖方法已在商业化的水产养殖孵化场得到实际应用,高效的有氧系统.常规化的水质监测使得鱼塘里每天的有机污染物都能被清理干净.每个养鱼池的大小约是VI.VIIVIIm×VI.VVm×0.VVm,鱼群的平均密度为I.0~IV0Kg/mIII.值得I.提的是,养鱼厂的水是从大型微咸水区域--渤海湾抽取的,并经过滤和充气,从而补偿了在抽取水的过程中的泄露和稀释,保证了养鱼厂的水质条件.
首先,决定监测什么与为什么监测,在哪里监测以及何时监测同样重要.水产养殖系统的水质标准典型的参数有细颗粒固体.难处理有机物.表面活性化合物.金属和硝酸.给定的水质标准值很大程度取决于鱼的种类.渔场的规模和养殖的目标,而在远程无线自动在线水质监测系统中,水的温度.溶解氧.总气体压力.氨及亚硝酸盐含量则可能变为重要参数.
当设计I.个监测程序以满足特定信息目标时,采样频率是非常重要的,因为估值的置信区间是采样数的函数.
我们所设计的的监测系统,需要设置I.些检测标准以便来监测放电.数据流或抽检的样品是否超过了许可值.本文介绍在水产养殖环境状况的重要参数,包括:溶解氧(DO),温度,pH值,盐度和最新的采样频率.
II.II系统架构
远程监测系统必不可少的几个特征应该是安全.可靠.价格低廉.所以,系统架构的选择应当以性价比.综合劳动力.产品价值.环境和供应商的支持等因素为基础.养殖场的每I.个基站均独立而建,因此这就要求不能用有线连接.首先是因为I.些位置太偏远而无法架起任何电网(电力或电话网),其次是因为大面积的水产养殖场和极端流动条件可能会损坏电缆连接.因此,每个基站需利用无线通信技术.通过服务器进行连接.
如图I.所示,我们设计的监测系统的基本结构可以分为两个主要部分:远程监测平台(RMP)和人机界面(HMI),分别用于监 *好棒文|www.hbsrm.com +Q: ¥351916072¥
测和信息的统计分析.这两部分通过CDMA技术实现彼此之间的通信.
II.III远程监测平台
远程监测平台包含传感器(温度,pH值,溶解氧等),信号调理电路,数据采集板和CDMA模块.
传感器将环境中各种非电量因素转化为电量因素,由信号调节电路将其转换为线性关系并过滤为0~VV的标准信号.信号之间通过网络的监测芯片PICNIC和A/D转换来实现传输,然后转换成数字信号的信息的动态网页.
CDMA模块使RMP能够接收数据,并将其传输数据到个人电脑来进行进I.步分析.由RMP监测到的主要变量被记录于表I.中.
II.IV数据传输
几组数据采集节点集合通过WiFi无线局域网来传输信息,当计算机上运行I.个通信程序时,可以通过TCP/IP协议将信息传输到远程服务器.
现场监测站利用中国联通的CDMA业务,通过服务器进行连接.以CDMA和IPsecVPN(虚拟专用网)路由器建立起来的虚拟局域网,使得此局域网上的Java代理程序可以访问实时.动态数据并能保证远距离无线传输的安全性.
II.V软件组织
根据本系统的操作要求而设计的人机界面如下所述:
I.)图形编辑器配置:用户可以使用设计好的图形元素数据库创建和编辑监测图形并设置其属性.
II)测量演示:在HMI上以特定格式显示测量结果,如图形,图表,表格等.
III)报警通知:当I.个或多个被监测变量值变化异常时,HMI便会通过声音和屏幕上的警告消息来提醒用户.
IV)账户管理:运营商可以通过设置帐户信息,密码和用户权限来轻松地管理授权用户.
V)系统配置:HIM的程序可由用户进行编辑,从而使得不同的用户可以设置不同的数据采集时间表和报警级别.
很显然,在线监测系统的软件部分包括III个基本模块.
II.V.I.图形编辑器配置模块.该程序可以根据水产养殖农场(车间,水池,设备,仪表等)的实际情况进行编辑并将监测传感器中的信号标记为的视觉图像,然后以SVG(可伸缩矢量图形)或XML文件形式保存下来.这些图形都是文本文档,因而易于创建.
此模块的主要特征包括形状.文本和有许多不同绘画风格的嵌入式光栅图形.图形编辑器的配置界面主要由工具栏树视图菜单绘图区域参数设置对话框和元件盒组成,如图II所示.如果用户要绘制文本框的形状,只需将鼠标移动到绘图区域中,单击并拖动图形即可.
II.V.II实时监测模块.该模块主要描述了使用图表.指针和表格来测量各参数的值,同时执行其他数据处理,存储以及网络相关的任务.图III记录了第V次研讨会中从I.0年VIII月V日至I.III年VIII月V日III年来各参数的日变化.
服务器首先将数据存储在XML文件中并以每天.每周.每月和每年报告的形式存储在数据库中,同时它会将测量值与用户预定的(或重新设定的)允许值相比较,存储的时间间隔是I.分钟.接着,它会将所有的测量值.比较值以及功能错误记录于不同的文件中,最后向授权用户指定的手机上发送I.条消息,从而使每个用户知道哪I.个鱼池里的指标超过了允许值.
II.V.III数据分析模块.数据分析方法是I.个完整的监测程序设计不可分割的I.部分,并在规划阶段就应给予考虑.WQTM系统的数据分析的目的是检测水质波动的趋势.因而,系统的数据分析技术的发展起着至关重要的作用.
考虑到有可能发生数据传输问题,系统中应用了I.种数据初步恢复程序.在集约化水产养殖中,水质环境监测数据有I.定的滞后性,因此,这就需要提前决策和控制,控制命令通过预测数据触发,至于预测控制策略则是I.个基本概念.
II.VI系统实施
我们建造的远程水质在线监测系统,结合了CDMA网络与互联网.机电I.体化.无线通信技术,系统的结构图如图I.所示.该系统可以被分成两个主要部分:RMP和HMI.
RMP用PICNICII.0(III态,日本)作为coreprocessing芯片和CDMA模块(InRouterIII.0C,中国)进行数据传输.由传感器记录的数据通过中国联通的CDMA业务传输到远程的信息服务器.因此,用户将能够通过互联网监测水中的各参数值.
用于目前研究的温度.DO.pH值.盐度的传感器的探针,是由Nantu公司(中国)制造的,分别可以精确到0.I.℃,0.I.mg/L,0.I.,0.I.ppt.HQIV0dI.VIII(哈希,美国)能保证长期使用的稳定性,能提供I..0%的高测量精度的相对优化的数据和精度为0.I.℃的温度数据.该CDMA模块(模块号:FASTRACKMI.II0IIIQIIIIIVVIII)由WAVECOM公司创建.
远程在线监测系统的人机界面通过JSP.Servlet和JavaBeen技术运行,并采用了模型_视图_控制器(MVC)结构来布局.用于开发我们所提出的CDMA的远程无线水质监测系统的软件和硬件清单如下所示:
软件:Eclipse.MyEclipseIII.II,LabVIEW,MySQL,ApacheTomcatV.V.
硬件:用于测量(温度,pH,溶解氧,EC)的传感器,监测芯片(PICNICII.0),CDMA模块,PC机.
两台结合了CDMA数字服务和VPN技术的原型机监测服务器已最先实际安装到了山东省的I.个水产养殖场中,以便来构建I.个遥感网络,如图IV所示.检测到的这些数据可以在任何时间通过因特网来检索和分析,以便掌握系统的实时状态及其变化,如图V.
III.结果与讨论
III.I.WQTM系统的定期监测
目前的研究结合了两种取样方法:I.是由水产养殖者在固定位置进行详细取样,II是通过WQTM系统中的遥感数据来取样.该系统每分钟的测量频率使其每天都能密切监测那些通过样品无法检测到的变化.
由于养鱼场是I.个高度敏感.开放.动态的体系,所有参数都在持续快速地变化着,在这个频率下能够被自动检测到的参数中,有I.些在I.定的范围内呈现出I.种自然的日常周期性波动.在图III的曲线中,这些围绕某I.最佳值平滑波动的曲线明显地表明环境中的压力变化不大,它会显示为第V个工作船的NO.0V0VIVI.鱼池的时间周期指标.
水质监测系统要求能够大规模.远距离.长时间的应用以期获得水质信息,而实验结果证明了我们所设计的监测系统均能满足这些要求.
III.II系统性能评价的实验结果
除去仪器维护的天数,我们测试和验证整个系统已有IIIIIV天.图VI显示了II00VIII年VI月I.日通过RMP#I.收集到的I.天的溶解氧的监测数据,监测频率设为III分,故每天共有VIIIIVI.条远程监测数据的记录,水中的各参数的值也每个小时通过手动测量来验证精度.图VI显示了每小时监测数据的平均值,由此,我们可以得出I.条结论:监测数据与手动收集的数据的确相符合.
不同于手动检测,主要部分的工作是必须由人工完成,远程在线监测系统可以自动获取数据,而无需频繁到某I.水域取样调查.因而,I.些污染事件也不会像人工检测I.样被错过.图VII显示了II00VIII年VI月I.日I.天中通过RMP#I.收集的pH值的监测数据,有时pH值的人工数据线迅速上升和下降,有时候它保持在I.条水平线上.通过系统监测到的数据而计算的每小时的平均值能够反应出水的实际状态.由此图可以证明和确认我们的系统的可靠性和准确性.结果表明在准确度.重复性和重现性方面,WQTM系统完全可以与传统的的分析方法相媲美.
通过分析每天的信息,此系统可以将长期观测到的本地的水质变化值与动力学参数值呈献给我们,因此如果安装更多的RMP,水质变化的影响因素就能以较高的时间和空间分辨率调查出来.
IV.结论
本研究开发了I.个完整的在线监测系统,能为水产养殖业提供远程水质信息,当被监测变量发生异常时,它实现了利用远程无线系统来监测环境中水的各参数值并发出报警通知.本研究的主要贡献在于,使大规模.远距离.长时间应用监测系统来获得水质信息的技术得以实现.但是,重要的是要考虑最终的长期愿景或目标,并确保所使用的技术对监测各种污染事件有足够的灵敏度.这将需要在监测和模型之间建立I.种强有力的联系,使其具备预测水质变化的能力,这种能力像是未来可能发生或是过去已经发生的错误和变化预测.
V.致谢
本工作获得国家高科技研究发展计划(II00VIIAAI.0ZIIIIIVIII)和国家重点科技研发计划(II00VIBADI.0A0II-0V)资金支持.作者在此感谢丰泽公司的成员,感谢他们热情好客以及对水质数据收集的协助.
附件II:外文原文(复印件)
CDMA-basedRemoteWirelessWaterQualityMonitoringSystemforIntensiveFishCulture
XiunaZhu
EU-ChinaCenterforInformation&CommunicationTechnologies
CollegeofInformationandElectricalEngineering,ChinaAgriculturalUniversity
Beijing,I.000VIIIIII,China
DaoliangLi?
EU-ChinaCenterforInformation&CommunicationTechnologies
CollegeofInformationandElectricalEngineering,ChinaAgriculturalUniversity
BeijingI.000VIIIIII,China
Email:dliangl@cau.edu.cn
Abstract
WaterqualitymonitoringplaysanimportantroleinmodernIntensivefishfarmingmanagement.Inordertoimprovetheefficiencyandprecisionofthedatacollectionprocedure,itisnecessarytohaveanautomatedmonitoringsystemthatcollectsenvironmentaldata,especiallytorecordlong-termandup-to-the-minuteenvironmentalfluctuations.Thepurposeofthisresearchwastodesignaremote-controlled,on-linewaterqualitymonitoringsystemforintensivefishcultureinChinabasedonwirelesscommunicationtechnologyCDMA.Sincethelong-termdetecteddataprovidesuswiththedetailsoftheenvironmentalconditionsdynamicsofwaterquality,thesystemallowsustocontrolthewaterqualityintimeandreducecatastrophiclosses.Theexperimentalresultsdemonstratethataffordable,largescale,longdistance,andlong-termmonitoringforwaterqualityinformationcanbeachievedbyusingourproposedmonitoringsystem.
I..Introduction
WaterqualitymonitoringplaysanimportantroleinmodernIntensivefishfarmingmanagement.Theclassicmethodofwaterqualitymonitoringconsistsofthefollowingsteps.Aqualifiedpersontakesmeasurementsofqualityvariable,normallyusingamulti-parametricinstrument.Incaseofdetectingacontaminationalarm,asampleofwateristakenandtransportedtoachemicallaboratoryinordertoanalyzethehazardoussubstancesmixedwithwater[I.II].Themaintenanceofthemeasurementsandalarmeventsismanualandtime-consuming.Otherwise,somecontaminationepisodesmightbemissed.
Advancementsinnewsensortechnologies,automatedcontrols,anddatatelemetrynowallowforunprecedentedmonitoringcapabilitiestostrengtheninsightsindesigningmitigationandmanagementstrategies[III].Atpresent,continuousmonitoringofdrinkwaterandwastewaterqualityatmosttreatmentplantsisinfrequent[VI].Real-timeremotemonitoringofwaterqualitysystem[II,I.V]basedoncommunicationandsensortechnologyhavegreatlyenhancedrapid.Areal-timewaterqualitymonitoringnetworkofEvrotasRiverhasbeenoperationalinLaconiasinceJulyII00IV[I.0].II00IV,anovelAutomatedWaterAnalyserComputerSupportedSystem(AWACSS)hasbeenbuiltbasedonimmunochemicaltechnology,whichcanmeasureseveralorganicpollutantsatlownanogramperlitrelevelinasinglefew-minutesanalysis[I.III].
Withinthepastdecade,integratedwaterqualityremotemonitoring(WQTM)systemshavebeendevelopedanddeployedbyscientists,governmentalagencies,andindustriesthroughouttheworldforenvironmentalandgeolocationdataacquisition.Atthesametime,someresearchershavepaidattentiontothereal-timecommunicationbetweendatacollectionandcontrolterminals[IV,V,I.IV].However,thefinancialburdenforbuildingthefundamentalhardwareofthesehigh-techfacilitiesmayonlybeaffordabletogovernmentsorverylargeaquiculturecorporations.Therefore,constructinganaffordable,easy-to-use,remotewaterqualitymonitoringsystemtodiagnosticcontaminationbasedonanautomaticandreal-timecommunicationplatformisurgentlyneededformodernagriculture.Itwillallowtheindustryto:(I.)improveenvironmentalcontrol;(II)reducecatastrophiclosses;(III)avoidproblemwithenvironmentalregulationsoneffluents;(IV)reducemanagementandlaborcosts;and(V)improveproductqualityandconsistency[VII,VIII].
Inordertoimprovetheefficiencyandtheprecisionofthedatacollectionprocedure,itisnecessarytohaveanautomatedsystemthatcollectsenvironmentaldata,especiallytorecordlong-termandup-to-the-minuteenvironmentalfluctuations.Thepurposeofthisresearchwastodesignaremote-controlled,on-linewaterqualitymonitoringsystemforintensivefishcultureinChinabasedonwirelesscommunicationtechnology.ThesedetecteddatacanberetrievedandanalyzedatanytimeviatheInternetsoastoknowthereal-timesystemstatusanditschange.Sincethelong-termdataprovidesuswiththedetailsoftheenvironmentalconditionsdynamicsofwaterquality,thesystemallowsustocontrolthewaterqualityintimeandreducecatastrophiclosses.
II.Methodology
II.I..Studysitedescription
Thecost-performancerelationshipofcurrentinaccurateenvironmentalmonitoringtechnologymeansthattheprofitmarginofIntensivesystemslimitstheirusetohighvalueculturespecies.Thecurrentstudywasconductedinanintensivefishfarmculturesite,FengzeCorporation,locatedinsideBohaiBayatthenorthestpartofShandong,China,whichisatypicalrecyclingaquaculturesystem(RAS)[I.].TheculturespeciesareIII0%turbot(Psettamaxima),IVV%Paralichthys,I.V%CynoglossusandI.0%otherfishspecies.Thissitehaspracticalapplicationsincommercialaquaculturehatcheries,effectiveaerobicsystem,monitoringwaterqualityroutinelyandcleaning-upoffoulingorganismsontheculturepoolseveryday.EachfishpoolisapproximatelyVI.VIIVIIm×VI.VVm×0.VVm.TheaveragefishstockdensityisI.0~IV0kg/mIII.Wateristypicallydraw-outfromBohaiBay,alargebrackishwaterarea,filteredandaerated,tomaintainwaterqualityconditionswhichcompensatedforwaterspillsanddilutionsoftheculturewater.
Firstly,decidingwhattomonitorisasimportantasdecidingwhy,whereandwhen.Waterqualitycriteriaforaquaculturesystemshavetypicallyconsideredparameterssuchasfinesolids,refractoryorganics,surface-activecompounds,metals,andnitrate[I.I.].Thevalueofagivenwaterqualitycriterionmaydependstronglyonthespecies,size,andcultureobjectives.Inremotewirelessautomaticon-linewaterqualitymonitoringsystems,temperature,dissolvedoxygen,totalgaspressure,ammonia,andnitritemaybecomeimportant.
Thefrequencyofsamplingisofgreatimportancewhendesigningamonitoringprogramtomeetspecifiedinformationgoals,becausetheconfidenceintervalsofestimatesareafunctionofthenumberofsamplestaken[IX].
Inourproposedmonitoringsystem,itrequirestheestablishmentofstandardsbywhichtomonitorifadischarge,streamorsampleisviolationofsomeacceptablelimit.Thispaperpresentsthecriticalparameterforenvironmentalstatusinaquaculture:dissolvedoxygen(DO),emperature,pH,salinity.Andthefrequencyofsamplingisup-to-theminute.
II.II.Systemarchitecture
Reliability,securityandinexpensivecharacteristicsrequiredwillallbeessentialintheremotemonitoringsystem.Therefore,thechoiceofthesystem’sarchitectureshouldbebasedonpriceperformance,consideringlabor,productvalue,environmentandvendorsupport.Theculturestationsarealllocatedalone,sothatnowiringwouldbenecessary,firstlybecausesomelocationsareremoteformanycablenetwork(powerortelephoneline)andsecondlybecauselargeareaofAquaculturefarmsandextremeflowconditionscoulddamagecableconnections.Consequently,eachstationiscommunicatedwithserverviawirelesscommunicationtechnology.
AsisshowninFigureI.,thebasicstructureofourproposedsystemcanbedividedintotwomajorparts:theRemotemonitoringplatform(RMP)andtheHumanMachineInterface(HMI)formonitoringandstatisticalanalysisofinformation,respectively.ThesetwopartscommunicatewitheachotherthroughCDMAtechnology.
II.III.Remotemonitoringplatform
TheRemotemonitoringplatformcontainssensors(temperature,pH,DO,etal.),thesignalconditioningcircuits,adata-acquisitionboardandCDMAmodule.
Sensorsconvertthevariousenvironmentalfactorsofnon-electricityintoelectricity,whichisbeconverttolinearbythesignalconditioningcircuitsandfilteredto0~VVstandardsignal.ThesignalistransmittedthoughtheWEBbasedmonitoringchipPICNICandtheA/Dconversionthenconvertedintoadigitalsignaltodynamicpagesofinformation.
TheCDMAmoduleenablestheRMPtoreceiveandtransmitdatatoaPCforfurtheranalysis.ThemainvariablescanbemonitoredbyRMParereportedinTableI..
II.IV.Datatransmission
TheseveralsetsofdataacquisitionnodetransmittheformationbyWiFiwirelessLAN,whilethecomputerrunningacommunicationprogramcantransmitinformationtotheremoteserverbyTCP/IPprotocol.
Fieldmonitoringstationiscommunicatedwithserver,usingChinaUnicom’sCDMAservices.ThevirtuallocalareanetworkbasedonCDMAandIPsecVPN(VirtualPrivateNetwork)routerisestablished,JAVAAGENTprogramintheserversystemcanaccessdatareal-timeanddynamicandsafetyoflong-rangewirelesstransmission.
II.V.Softwareorganization
Accordingtothesystemoperationrequirements,thedesignedhumanmachineinterfaceisdescribedasfollows:
I.)Graphicseditorconfiguration:Theusercancreateandeditmonitoringgraphicsusingdesignedgraphicelementsdatabaseandsetitsproperties.
II)Measurementpresentation:TheHMIshowsthemeasurementsinaspecificformat,suchasgraphs,charts,tables,etc.
III)Alarmnotification:Whenoneormoremonitoredvariablestakeanomalousvalues,theHMIattractstheattentionoftheuserwithsoundsandon-screenwarningmessages.
IV)Accountmanagement:Authorizeduserscanbemanagedwitheasebysettingaccountinformation,passwordanduserprivilege.
V)Systemconfiguration:HMIwasdesignedtobeprogrammablebytheusersothatdifferentdatacollectionschedulesandalarmlevelscanbesetup.
Thesoftwareoftheon-linemonitoringsystemclearlyincludesthreebasicmodules.
II.V.I.Graphicseditorconfigurationmodule.
Theprogramcanedittheaquaticbreedingfarms(workshops,pools,devices,meters,etc.)oftheactualsituation,andmarkthemonitoringsensorsinthevisualimageoflayout,thensaveasSVG(ScalableVectorGraphics)orXMLfiles.Thegraphicsaretext-basedandthuseasytocreate.
Keyfeaturesincludeshapes,textandembeddedrastergraphics,withmanydifferentpaintingstyles.TheInterfaceofgraphicseditorconfigurationismainlycomposedoftoolbartreeviewmenudrawingareaparametersetdialogboxandcomponentbox,asisshowninFigureII.Todrawthetextshape,theusersjusthavetomovemouseoverthedrawingarea,clickanddrag.
II.V.IIReal-timemonitoringmodule.
Theprogrambasicallypresentsthevaluesofmeasuredparametersusingcharts,needleindicatorsandtables,alsoperformingotherdataprocessing,storage,andInternet-relatedtasks.FigureIIIshowsthedailyvariationofparametersoffifthworkshopfrom0VIII-V-I.0to0VIII-V-I.III.
Theserver,firstlystoresdatainXMLfilesandindaily,weekly,monthlyandyearlyreportsinthedatabaseandatthesametimeitcomparesmeasurementstothepredefined(orredefined)acceptablelimitssetbytheuser.ThetimeintervalisI.minute.Furthermore,itrecordsallmeasurementsorcommunicationorfunctionalerrorsindifferentfiles,andfinallysentamessagetoaspecificphonenumbers,keptbytheauthorizeduser,sothatthepersonnelisawarethattherebeenalarminthespecificpool.
II.V.IIIDataanalysismodule.
Dataanalysismethodsareanintegralpartofacompletemonitoringprogramdesign,andshouldbeconsideredattheplanningstage.TheaimofdataanalysisofWQTMsystemistodetectatrendofwaterqualityfluctuation.Tothispurposethedevelopmentofdataanalysistechniquesforsystemplaysacrucialrole.
Inrespectthatitispossibletotakeplacedatatransmissionproblems,apreliminarydatarecoveringprocedurewasapplied.Intheintensiveaquaculture,themonitoreddataofthewaterqualityenvironmentalhaveacertainlag.Therefore,itneedstomakedecisionsandcontrolinadvance.Controlordersaretriggeredbyforecastdata,astosaypredictivecontrolstrategyisabasicidea.
II.VI.SystemImplementation
CombiningtheCDMAnetworkwiththetechnologiesoftheInternet,mechatronics,andwirelesscommunication,thisstudyconstructsaremotewirelesson-linewaterqualitymonitoringsystem.ThestructuraldiagramofthesystemisshowninFigureI..Thesystemcanbedividedintotwomajorparts:theRMPandtheHMI.
TheRMPusedPICNICII.0(TriState,Japan)asthecoreprocessingchipandtheCDMAmodule(InRouterIII.0C,China)fordatatransmission.ThedatarecordedbysensorsistransferredtotheremoteinformationserverthroughtheChinaUnicom’sCDMAservices.Therefore,theuserwillbeabletomonitorthewaterparametervaluesviatheInternet.
Theprobeofsensorusedthepresentstudyfortemperature,DO,pH,salinityismadebytheNantuCompany(China)withanaccuracyof0.I.°C,0.I.mg/L,0.I.,0.I.pptseparately.TheHQIV0dI.VIII(HACH,USA)provideslongtermstabilityandhighmeasurementaccuraciesofI..0%forrelativeDOand0.I.°Cfortemperature.TheCDMAmodule(moduleno.:FASTRACKMI.II0IIIQIIIIIVVIII)createdbyWAVECOMCorporation.
TheHMIofremoteon-linemonitoringsystemwasprogrammedwithJSP,ServletandJavaBeantechnologyusingModel-View-Controller(MVC)architecture.ThesoftwareandhardwareusedtodevelopourproposedCDMA-basedremotewirelesswaterqualitymonitoringsystemarelistedasfollows:
Software:Eclipse,MyEclipseIII.II,LabVIEW,MySQL,ApacheTomcatV.V.
Hardware:sensorsformeasuring(temperature,pH,DO,EC),monitoringchip(PICNICII.0),CDMAmodule,PC.
OriginallytwoprototypeofmonitoringserverscombinedwithCDMAdigitalservicesandVPNtechnologyhaveinstalledtopracticalaquafarminShandongtoconstructaremotesensingnetwork,asshowninFigureIV.
ThesedetecteddatacanberetrievedandanalyzedatanytimethroughtheInternetsoastoknowthereal-timesystemstatusanditschange,asshowninFigureV.
III.ResultsandDiscussion
III.I..RegularmonitoringofWQTMsystem
Thecurrentstudycombinedtwosamplingstrategies:detailedmeasurementatfixedpositionsbyaquaculturistsandremotelysenseddatabyWQTMsystem.Thefrequencyofmeasurementsofthissystem(everyoneminute)permitsclosemonitoringofchangesthatcouldnotbedetectedbysampling,evenonadailybasis.
Allparametersarechangingcontinuouslyandveryquickly,sinceafishfarmisahighlysensitive,open,dynamicsystem.Amongtheparametersthatcanbemonitoredautomaticallywiththisfrequency,someshowanaturaldailyperiodicalfluctuation,withincertainlimits.InthegraphoftheFigureIII,thesesmoothfluctuationsaroundverygoodvaluesareobviousindicationoftheabsenceofsevereenvironmentalpressure.ItisshownforanindicativeperiodoftimeoftheNO.0V0VIVI.fishpondofthefifthworkship.Theexperimentalresultsdemonstratethatlargescale,longdistance,andlong-termmonitoringforwaterqualityinformationcanbeachievedbyusingourproposedmonitoringsystem.
III.II.Experimentalresultsofsystemperformanceevaluation
Exceptfordaysweperformedmaintainedontheinstruments,wehavetestedandverifiedtheentiresystemforIIIIIVdays.FigureVIshowsthemonitoringdataofdissolvedoxygenforasingledayascollectedbyRMP#I.onJuneI.stII00VIII.ThefrequencyofmonitoringwassetIIIminute,sotherewereVIIIIVI.recordsofremotemonitordataperday.Andthevaluesofwaterparameterswerealsomanuallysurveyedveryhourtoverifytheaccuracy.AsshowninFigureVI,theaveragevaluesofremotemonitordataeveryhourweredisplayed.Sowecanconcludethatthemonitordatadidmatchthedatacollectedmanually.
Unlikesurveymanually,mainpartworkofwhichhastobedonebyahumanbeing,theremoteon-linemonitoringsystemcangetthedataautomaticallywithoutvisitingtothewaterlocationfrequently.Otherwise,somecontaminationepisodeswouldnotbemissedlikesurveymanually.FigureVIIshowsthemonitoringdataofpHforasingledayascollectedbyRMP#I.onJuneI.stII00VIII.SometimesthemanualdatalineofpHincreasedanddecreasedrapidly,andsometimesitholdonasahorizontallineasshowninFigureVII.Theaveragevaluesofremotemonitordataeveryhourcalculatedbythemonitoreddatacanindicatetherealstateofwater.Thusthegraphcandemonstrateandconfirmthereliabilityandaccuracyofoursystem.TheresultsshowedthatWQTMsystemisfullycomparabletoconventionalanalyticaltechniquesintermsofaccuracy,repeatabilityandreproducibility.
Thesystemcanprovideuswithlong-termobservationsonboththewaterqualityvariationsandthewaterparameterdynamicsinalocalareabycalculatingtheinformationforeachday.ThustheeffectsofwaterqualityvariationscanbeinvestigatedinagoodtemporalandspatialresolutionifmoreRMPsareinstalled.
IV.Conclusion
Thisstudydevelopedacompleteandon-linemonitoringsystemforremotewaterqualityinformationoffishfarming.Itachievedtheremotewirelessmonitorthewaterenvironmentalparametersandalarmnotificationwhenmonitoredvariablestakeanomalousvalues.Themajorcontributionofthisstudyisthatitmakeslargescale,longdistance,andlong-termmonitoringforwaterinformationachievable.However,itisimportanttoconsidertheultimatelongtermvisionorgoalandensurethatthetechniquesusedaresensitiveenoughtodetectvariousilestones.Thiswillrequireastronglinkbetweenmonitoringandmodelingtoprovidetheabilitytopredictperturbationsinwaterqualitythatarelikelytooccurinthefutureandhaveoccurredinthepastinconjunctionwithanerrororvariabilityprediction.
V.Acknowledgements
ThisworkwasfinanciallysupportedbytheNationalHighTechnologyResearchandDevelopmentProgramofChina(II00VIIAAI.0ZIIIIIVIII)andNationalKeyTechnologyR&DProgram(II00VIBADI.0A0II-0V).TheauthorswouldliketothankthemembersofFengzeCompanyfortheirhospitalityandfortheassistancewiththecollectionofthewaterqualitydata.
References
[I.]Colt,J.Waterqualityrequirementsforreusesystems.AquaculturalEngineering,IIIIV(III):I.IVIII–I.VVI,II00VI.
[II]Glasgow,H.B.,etal.Real-timeremotemonitoringofwaterquality:areviewofcurrentapplications,andadvancementsinsensor,telemetry,andcomputingtechnologies.JournalofExperimentalMarineBiologyandEcology,III00(I.-II):IV0IX–IVIVVIII,II00IV.
[III]Helbling,D.E.andJ.M.VanBriesen.Continuousmonitoringofresidualchlorineconcentrationsinresponsetocontrolledmicrobialintrusionsinalaboratory-scaledistributionsystem.WaterResearch,IVII(I.II):IIII.VIII–IIII.VIIII,II00VIII.
[IV]Jiang,J.A.,etal.Agsm-basedremotewirelessautomaticmonitoringsystemforfieldinformation:Acasestudyforecologicalmonitoringoftheorientalfruitfly,bactroceradorsalis(hendel).ComputersandElectronicsinAgriculture,VIII(II):IIIVIII–IIVIX,II00VIII.
[V]Jiang,J.A.,etal.Areal-timewirelesssmartsensorarrayforschedulingirrigation.ComputersandElectronicsinAgriculture,VII.(I.):IVIV–V0,II00VIII.
[VI]Lee,M.W.,etal.Real-timeremotemonitoringofsmallscaledbiologicalwastewatertreatmentplantsbyamultivariatestatisticalprocesscontrolandneuralnetwork-basedsoftwaresensors.ProcessBiochemistry,IVIII(I.0):I.I.0VII–I.I.I.III,II00VIII.
[VII]Lee,P.G.Areviewofautomatedcontrolsystemsforaquacultureanddesigncriteriafortheirimplementation.AquaculturalEngineering,I.IV(III):II0V–IIIIVII,I.IXIXV.
[VIII]Lee,P.G.Processcontrolandartificialintelligencesoftwareforaquaculture.AquaculturalEngineering,IIIII(I.-III):I.III–IIIVI,II000.
[IX]Loftis,J.C.andR.C.Ward.Cost-effectiveselectionofsamplingfrequenciesforregulatorywaterqualitymonitoring.EnvironmentInternational,III(IV):IIIXVII–III0II,I.IXVIII0.
[I.0]Mariolakos,I.etal.Real-timemonitoringonevrotasriver(laconia,greece):dissolvedoxygenasacriticalparameterforenvironmentalstatusclassificationandwarning.Desalination,III.III(I.-III):VIIII–VIII0,II00VII.
[I.I.]Sim,F.S.,etal.Waterqualityindexasasimpleindicatorofaquacultureeffectsonaquaticbodies.EcologicalIndicators,VIII(V):IVVIIVI–IVVIIIIV,II00VIII.
[I.II]Tor,F.,etal.Designofavirtualinstrumentforwaterqualitymonitoringacrosstheinternet.SensorsandActuatorsB:Chemical,VIIVI(I.-III):IIVIIII.–IIVIIIV,II00I..
[I.III]Tschmelak,J.,etal.Automatedwateranalysercomputersupportedsystem(awacss):Partii:Intelligent,remote-controlled,cost-effective,on-line,water-monitoringmeasurementsystem.BiosensorsandBioelectronics,II0(VIII):I.V0IX–I.VI.IX,II00V.
[I.IV]Tseng,C.L.,etal.Feasibilitystudyonapplicationofgsmsmstechnologytofielddataacquisition.ComputersandElectronicsinAgriculture,VIII(I.):IVV–VIX,II00VI.
[I.V]Udy,J.,etal.Waterqualitymonitoring:acombinedapproachtoinvestigategradientsofchangeinthegreatbarrierreef,australia.MarinePollutionBulletin,VI.(I.-IV):IIIIIV–IIIIIVIII,II00V.IIIVIIIV
版权保护: 本文由 hbsrm.com编辑,转载请保留链接: www.hbsrm.com/lwqt/wxzs/254.html